Noncommutative symmetric functions and Lagrange inversion II: Noncrossing partitions and the Farahat-Higman algebra
Résumé
We introduce a new pair of mutually dual bases of noncommutative symmetric functions and quasi-symmetric functions, and use it to derive generalizations of several results on the reduced incidence algebra of the lattice of noncrossing partitions. As a consequence, we obtain a quasi-symmetric version of the Farahat-Higman algebra.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|