Noncommutative symmetric functions and Lagrange inversion II: Noncrossing partitions and the Farahat-Higman algebra - Algebraic combinatorics and symbolic computation
Article Dans Une Revue Advances in Applied Mathematics Année : 2022

Noncommutative symmetric functions and Lagrange inversion II: Noncrossing partitions and the Farahat-Higman algebra

Résumé

We introduce a new pair of mutually dual bases of noncommutative symmetric functions and quasi-symmetric functions, and use it to derive generalizations of several results on the reduced incidence algebra of the lattice of noncrossing partitions. As a consequence, we obtain a quasi-symmetric version of the Farahat-Higman algebra.
Fichier principal
Vignette du fichier
S019688582200080X.pdf (446.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04225461 , version 1 (22-07-2024)

Licence

Identifiants

Citer

Jean-Christophe Novelli, Jean-Yves Thibon. Noncommutative symmetric functions and Lagrange inversion II: Noncrossing partitions and the Farahat-Higman algebra. Advances in Applied Mathematics, 2022, 140, pp.102396. ⟨10.1016/j.aam.2022.102396⟩. ⟨hal-04225461⟩
56 Consultations
9 Téléchargements

Altmetric

Partager

More